Histogram data analysis based on Wasserstein distance

Rosanna Verde - Antonio Irpino

Department of European and Mediterranean Studies
Second University of Naples

Caserta - ITALY

Aims

Introduce:

New distances to compare histogram (distribution) data in the framework of the Symbolic Data Analysis – especially the Wasserstein - Mallows' & distance

Show:

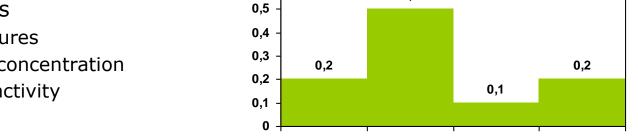
Some properties of Wasserstein – Mallows' & distance

Present:

- Methodological approaches based on 6 distance
 - Basic Statistics for histogram data (including intervals and distributions as particular cases)
 - Clustering methods: DCA and hierarchical (Ward criterion)
 - Linear regression model: 6 as metric for Sum Square Errors in OLS estimation method

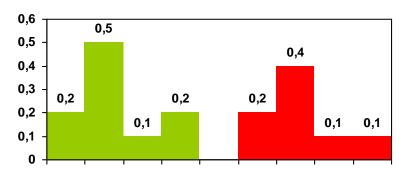
Main Sources of histogram data

- Results of summary/clustering procedures
 - From surveys
 - From large databases
 - From sensors
 - **Temperatures**
 - Pollutant concentration
 - Network activity



0,6

- Data streams
 - Description of time window data sequences
- Image analysis
 - Color bandwidths
- Confidentiality data
 - Summary data non punctual



0.5

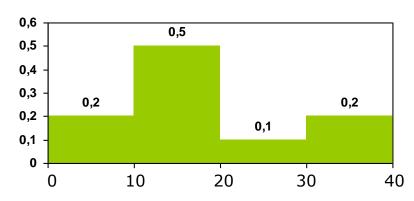
Histogram data as a particular case of modal symbolic descriptions [Bock and Diday (2000)]

Histogram data is a model for representing the empirical distribution of a continuous variable Y partitioned into a set of contiguous I_h intervals (bins) with associated π_h weights.

A histogram is represented by a set of H ordered pairs (I_h, π_h) } such that:

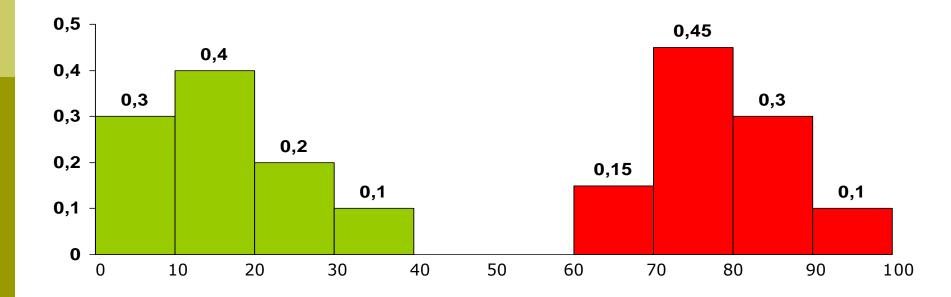
$$\begin{split} I_{hi} &\equiv \left[\underline{y}_h; \overline{y}_h \right] \; ; \quad \underline{y}_h \leq \overline{y}_h \quad ; \quad \underline{y}_h, \overline{y}_h \in \Re \\ & \bigcup_{h=1,\dots,H} I_{hi} = \left[\min_{h=1,\dots,H} \left\{ \underline{y}_h \right\}; \max_{h=1,\dots,H} \left\{ \overline{y}_h \right\} \right] \\ & h \neq h' \quad I_h \cap I_{h'} = \varnothing \end{split} \qquad \qquad \qquad \qquad \sum_{h=1,\dots,H} \pi_h = 1$$

$$Y(i)=[([0-10],0.2);([10-20],0.5);([20-30],0.1);$$
 $([30-40],0.2)]$



Comparison of two histogram data

- How do compare two units described by two histograms?
- A possibility is to use metrics developed for comparing probability distributions



Metrics used for the evaluation of the convergence of two probability measures (Gibbs and Su, 2002)

Given:

- a domain Ω on which is possible to define a Borel σ -algebra,
- two measure μ , ν
- the density functions f and g
- the corresponding distribution functions F and G and
- a subdominant measure λ_{r} like: $\lambda = (\mu + \nu)/2$,

Gibbs and Su (2002) present a review of the most used dissimilarities:

Abbreviation	Metric				
D	Discrepancy				
H	Hellinger distance				
I	Relative entropy (or Kullback-Leibler divergence)				
K	Kolmogorov (or Uniform) metric				
L	Lévy metric				
P	Prokhorov metric				
S	Separation distance				
TV	Total variation distance				
W	Wasserstein (or Kantorovich) metric				
χ^2	χ^2 distance				

A suitable measure to compute the distance between histograms: Wasserstein-Kantorovich metric

we propose to use the Wasserstein-Kantorovich metric:

$$d_{W}(\mu, \nu) = \sqrt{\int_{0}^{1} (F^{-1}(t) - G^{-1}(t))^{2} dt}$$

in particular the derived ℓ_2 Mallow's distance between two quantile functions

$$d_{w}^{2}(\mu,\nu) = \int_{0}^{1} (F^{-1}(t) - G^{-1}(t))^{2} dt$$

The main difficulties to compute this distance is the analytical definition of the *quantile function*...

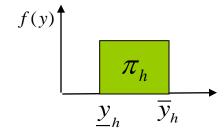
But in our case we treat especially with histogram data), indeed...

Histograms are locally uniform

Having represented an histogram Y(i) as $\{(I_1, \pi_1), ..., (I_h, \pi_h), ..., (I_m, \pi_H)\}$ (where H is the number of intervals of the support), we may define:

the empirical density function f(y) as:

$$f_h = \begin{cases} \frac{\pi_h}{\underline{y}_h - \overline{y}_h} & \text{if } y \in [\underline{y}_h; \overline{y}_h) \\ 0 & \text{otherwise} \end{cases}$$



• the empirical *distribution function*

$$w_h = \begin{cases} 0 & \text{if } h = 0\\ \sum_{k=1}^h \pi_k & \text{if } h = 1, ..., m \end{cases}$$

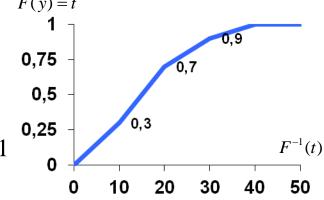
$$w_h = \begin{cases} 0 & \text{if } h = 0 \\ \sum_{k=1}^{h} \pi_k & \text{if } h = 1, ..., m \end{cases}$$

$$F(y) = w_h + \left(y - \underline{y}_h\right) \frac{w_h - w_{h-1}}{\overline{y}_h - \underline{y}_h} \quad iff \quad \underline{y}_h \le y < \overline{y}_h$$

$$F(y) = t$$

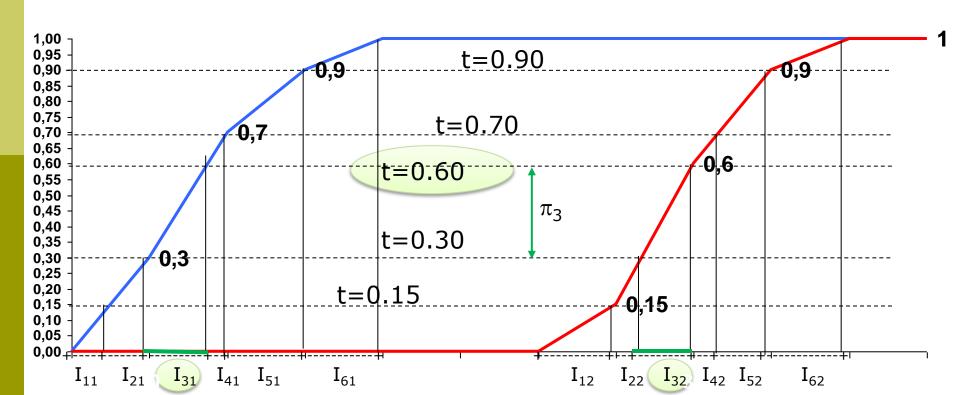
 hence the empirical quantile function (The inverse of the distribution function)

$$F^{-1}(t) = \underline{y}_h + \frac{t - w_{h-1}}{w_h - w_{h-1}} (\overline{y}_h - \underline{y}_h) \text{ where } 0 \le w_h \le t \le w_{h-1} \le 1$$



Geometric interpretation

The comparison of two quantile functions associated with two histograms requires the partition of the support of the two qf's into m intervals with associated uniform density



l	π_l	$I_{li} = \left[egin{array}{c} \underline{y}_{li} , \overline{y}_{li} \end{array} ight]$	$I_{lj} = \left[\underline{y}_{lj}, \overline{y}_{lj} \right]$	$d^2_W(I_{il};I_{jl})$	$\pi_l d^2_W(\mathrm{I}_{il}; \mathrm{I}_{jl})$	
1	0.15	[0; 5]	[60,70]	3908.33	586.25	
2	0.15	[5;10]	[70;73.3]	4115.46	617.32	
3	0.30	[10; 16.6]	[73.3;80]	4013.22	1203.97	
4	0.10	[16.6;20]	[80;83.3]	4013.22	401.32	
5	0.20	[20;30]	[83.3;90]	3801.63	760.33	
6	0.10	[30;40]	[90;100]	3600.00	360.00	
3929.18						

$$d_{w}^{2}(Y_{i}, Y_{j}) = \sum_{l=1}^{m} \pi_{l} d^{2}(I_{li}, I_{lj}) = \sum_{l=1}^{m} \pi_{l} \left[(c_{li} - c_{lj})^{2} + \frac{1}{3} (r_{li} - r_{lj})^{2} \right]$$

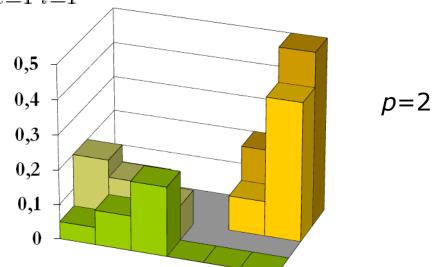
With
$$I_{li} = \left[\underline{y}_{li}, \overline{y}_{li}\right]$$
; $c_{li} = \frac{\underline{y}_{li} + \overline{y}_{li}}{2}$; $r_{li} = \frac{\overline{y}_{li} - \underline{y}_{li}}{2}$ center and radius of I_{li}

Verde, Irpino, COMPSTAT2006

Multivariate distance

Assuming independence among p variables we propose the an extension of d^2_W distance to the multivariate case

$$d_W^2(Y(i), Y(j)) := \sum_{k=1}^p \sum_{l=1}^{m_k} \pi_l^{(k)} \left[\left(c_{li}^{(k)} - c_{lj}^{(k)} \right)^2 + \frac{1}{3} \left(r_{li}^{(k)} - r_{lj}^{(k)} \right)^2 \right].$$



Average histogram based on d_w^2 Wasserstein distance

The barycenter (average) histogram Y(b) of a set of histogram data Y(i) (i=1, ..., n) can be computed minimizing the **Sum of Square**

Distances

$$f(Y(b^*)) = \sum_{i=1}^{n} d_W^2(Y(i), Y(b))$$

(like for a cloud of points in classical data analysis)

$$f(Y(b^*)) = \sum_{i=1}^{n} \sum_{l=1}^{m} \pi_l \left[(c_{li} - c_{lb})^2 + \frac{1}{3} (r_{li} - r_{lb})^2 \right]$$

That is minimized when the usual first order conditions are satisfied:

$$\begin{cases} \frac{\partial f}{\partial c_{lb}} = -2\pi_{l} \sum_{i=1}^{n} (c_{li} - c_{lb}) = 0 \\ \frac{\partial f}{\partial r_{lb}} = -\frac{2}{3} \pi_{l} \sum_{i=1}^{n} (r_{li} - r_{lb}) = 0 \end{cases} \Rightarrow c_{lb} = n^{-1} \sum_{i=1}^{n} c_{li} ; r_{lb} = n^{-1} \sum_{i=1}^{n} r_{li}$$

$$Y(b) = \left\{ \left(\left[c_{1b} - r_{1b}; c_{1b} + r_{1b} \right], \pi_1 \right); \dots; \left(\left[c_{lb} - r_{lb}; c_{lb} + r_{lb} \right], \pi_l \right); \dots; \left(\left[c_{mb} - r_{mb}; c_{mb} + r_{mb} \right], \pi_m \right) \right\}$$

Variance of the set of histograms Y(i)

 \square Determined Y(b) through the minimization problem

$$b^* = \arg\min \sum_{i=1}^n d_W^2(Y(i), Y(b))$$

The variance of the set of histogram data is:

$$\sigma^{2} = \sum_{i=1}^{n} \sum_{l=1}^{m} \pi_{l} \left[(c_{li} - c_{lb})^{2} + \frac{1}{3} (r_{li} - r_{lb})^{2} \right]$$

Clustering methods for Histogram data based on Wasserstein distance

- Dynamic Clustering Algorithm
- Hierarchical method (Ward criterion)

Dynamic Clustering Algorithm

general schema of the "Nuées Dynamiques" (Diday 1972)

The algorithm aims to obtain a partition **P** of

- a set E of symbolic data in k clusters and
- **a** set **L** of k prototypes $\{G_1, ..., G_i, ..., G_k\}$ that best represent the clusters $\{C_1, ..., C_i, ..., C_k\}$ of the partition **P**

The algorithm optimizes a criterion Δ of fitting between prototypes and clusters:

$$\Delta(P^*,L^*) = Min\{\Delta(P,L) \mid P \in P_k, L \in L_k\}$$

where : P_k is the set of all the partitions of E into k clusters and L_k is the set of k prototypes.

The algorithm executes alternatively:

an *allocation step*and a representation step

In this case **E** is a set of histogram data

Wasserstein distance for Clustering data according to Dynamic Clustering algorithm classical schema

(a) Initialization

k prototypes $Y(b_1),...,Y(b_K)$ of L are randomly chosen

(b) Allocation step

For each histogram Y(i) of E the allocation index ℓ to the clusters is computed and Y(i) is assigned to the cluster C_{ℓ} where:

$$\ell = \arg\min_{k=1,...,K} d_W^2(Y(i), Y(b_k))$$

Wasserstein ℓ_2 distance

(c) Representation step

For each cluster C_k is identified the prototype $Y(b_k)$ of L that minimizes

$$\Delta(C_k, Y(b_k)) = \sum_{i \in C_k} d_W^2(Y(i), Y(b_k))$$

Histogram prototype/barycenter of histograms belonging to the cluster C_k

(b) and (c) are repeated until the convergence

Property of Wasserstein distance: Inertia decomposition

Being the prototype the barycenter and $d_{\scriptscriptstyle W}^{\,2}$ is a squared Euclidean distance, then

$$TI = \sum_{i=1}^{n} d_W^2(Y(i), Y(b)).$$
 is the inertia for grouped data

Then, according to the Huygens' theorem *TI* can be decomposed in Within and Between inertia

$$TI = WI + BI = \sum_{h=1}^{k} \sum_{i \in C_h} d_W^2(Y(i), Y(b_h)) + \sum_{h=1}^{k} |C_h| d_W^2(Y(b_h), Y(b)).$$

Some results

Application on US monthly temperatures data set

- We have considered a dataset constituted by the "Monthly Average Temperatures recorded in the 48 states of US from 1895 to 2004 (Hawaii and Alaska are not present in the dataset).
- □ The analysis consists of the following three steps:
- Representation of the <u>distributions of temperatures</u> of each State for each month by means of <u>histograms</u>;
- 2. Computing of the distance matrix using d_W^2 ;
- 3. DCA procedure to find the best partition P
- 4. Calinski Harabaz index is computed to compute the optimal number k of clusters
- 5. Hierarchical clustering procedure based on the Ward criterion

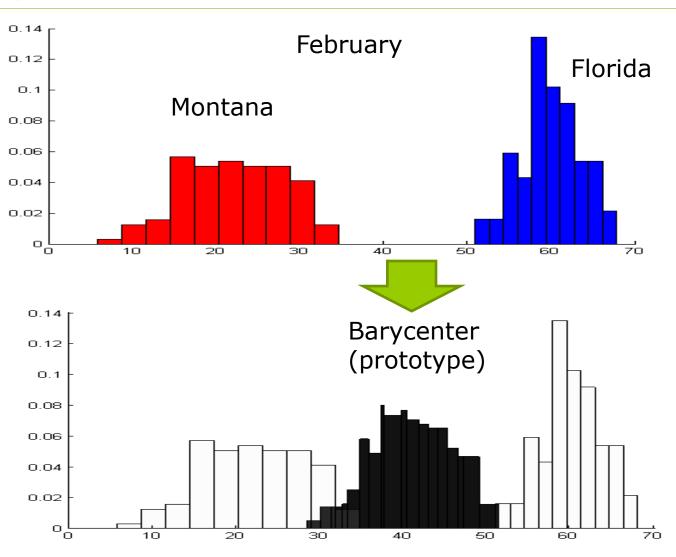
The original dataset is freely available at the National Climatic Data Center

/// // JA Otato code									
	Α	В	С	D	Е	F	G	Н	- 1
1	State code	measure	Year	January	Febraury	March	April	May	June
2	1	2	1895	43,7	37,6	54,5	63,1	69,8	7
3	1	2	1896	44,1	47,9	52,5	67,9	75,7	
4	1	2	1897	42,6	51,2	60,2	62	68,6	8
5	1	2	1898	49,4	45,9	59	58,1	73,4	8
6	1	2	1899	44,4	39,9	55,2	61,6	75,8	7
7	1	2	1900	44	44,1	52,6	63,5	71,2	7
8	1	2	1901	46,1	43,1	53	57,4	70	7
9	1	2	1902	43,2	40,6	54,8	61,6	75,3	8
10	1	2	1903	43,6	48,2	59,2	60,7	69,4	7
11	1	2	1904	41,7	49,2	58,2	60	69,6	7
12	1	2	1905	39,1	39,5	59,5	63,5	74,4	7
		_							

website

http://www1.ncdc.noaa.gov/pub/data/cirs/drd964x.tmpst.txt

Histogram barycenter (prototype)



Experimental results

$$CH(k) = \frac{BI(k)/(k-1)}{WI(k)/(n-k)}$$

Dynamic Clastering algorithm results: The first 5 columns represent the Quality Partition index (min, max, means, median) on 100 iterations – the last one the best value of Calinski-Harabaz index

k	QPI min	QPI max	QPI mean	QPI median	QPI std dev	Best CH
2	0.6482	0.6555	0.6527	0.6527	0.0014	44.07
3	0.8069	0.8190	0.8125	0.8124	0.0029	70.94
4	0.8449	0.8666	0.8528	0.8522	0.0044	72.02
5	0.8494	0.8924	0.8663	0.8646	0.0080	77.65
6	0.8665	0.9086	0.8847	0.8811	0.0115	75.05
7	0.8577	0.9144	0.9000	0.9044	0.0126	69.63
8	0.8835	0.9233	0.9121	0.9135	0.0070	70.70
9	0.9028	0.9350	0.9174	0.9168	0.0048	64.05
10	0.8917	0.9360	0.9208	0.9202	0.0061	60.81

Hierarchical clustering – according to the "Ward criterion" - based on Wasserstein distance

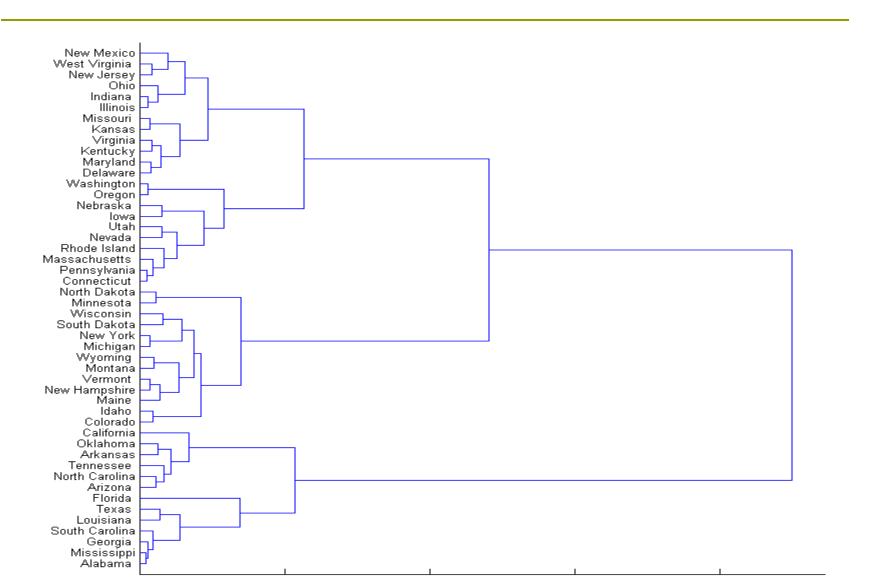
For example, we can apply the Ward criterion for a hierarchical clustering of the set E of histogram data:

$$d_{Ward}(C_s, C_t) = \frac{|C_s||C_t|}{|C_s| + |C_t|} d_W^2(Y(b_s), Y(b_t))$$

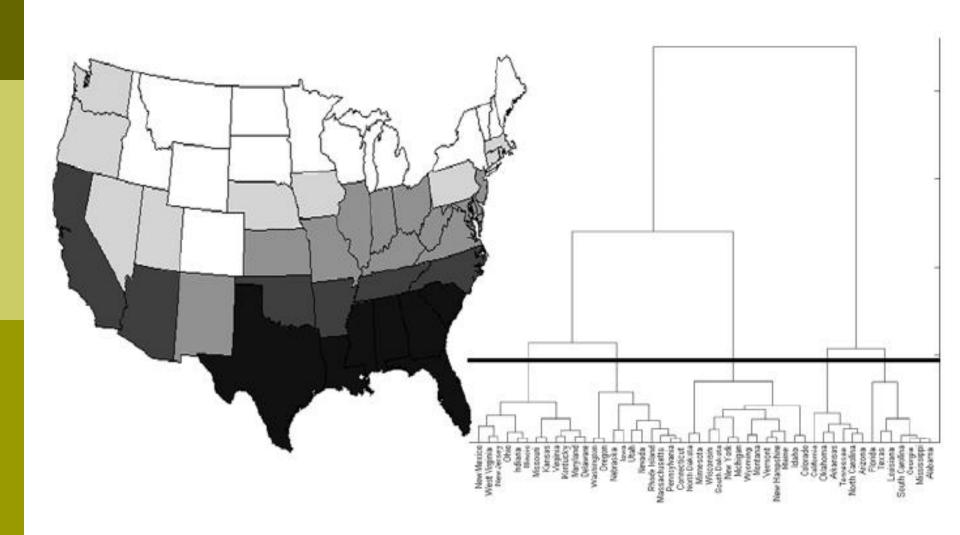
the procedure joins those two classes which minimize

$$TI(C_s \cup C_t) = TI(C_s) + TI(C_t) + \frac{|C_s||C_t|}{|C_s| + |C_t|} d_W^2(Y(b_s), Y(b_t))$$

Hierarchical tree



Final results and coloured map



Regression model for histogram variables based on Wasserstein distance

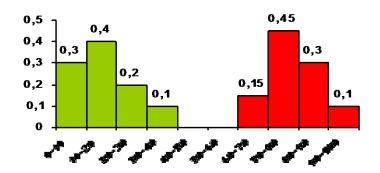
A Regression model for histogram data

Data = Model Fit + Residual

 Linear regression is a general method for estimating/describing association between a continuous outcome variable (dependent) and one or multiple predictors in one equation.

Easy conceptual task with classic data

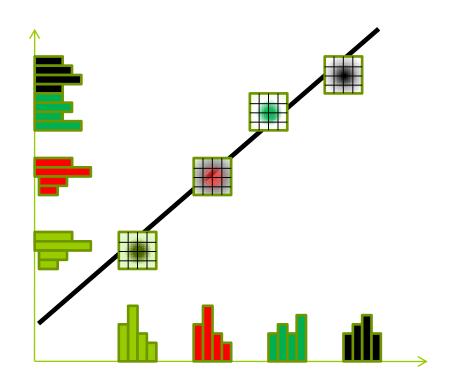
But what does it means when dealing with histogram data?



Billard, Diday, IFCS 2006 Verde, Irpino, COMPSTAT 2010; CLADAG 2011 Dias, Brito, ISI 2011

Regression with histograms variables: a proposal in SDA framework

- A solution was given by Billard and Diday (2006)
- The model fit a linear regression line throught the mixture of the *n* bivariate distributions
- Given a punctual value of X it is possible to predict the punctual value of Y



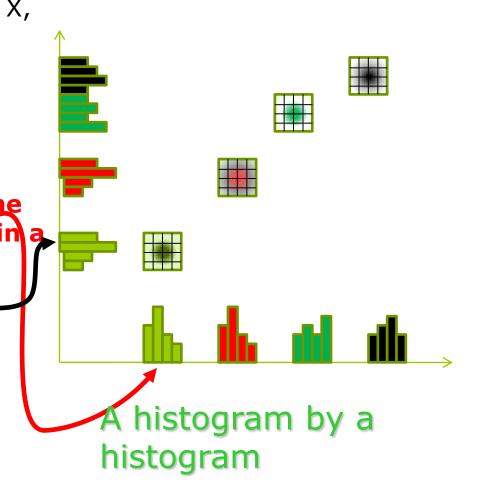
Linear Regression Model for histogram data:

our approach involves SDA as well as Functional Data Analysis (Verde, Irpino, 2010)

Given a histogram variable X, we search for a linear trasformation of X which

allows us to predict the histogram variable Y

given the histogram of the temperatures observed in region during a month, is it possible to predict the distribution of the temperature of another month using a linear transformation of the histogram variable?



Multiple regression model for quantile functions

Our concurrent multiple regression model is:

$$(y_i(t)) = \beta_0 + \sum_{j=1}^p \beta_j x_{ij}(t) + \varepsilon_i(t)$$

Quantile functions associated to histogram/ distribution data

in matrix notation:

$$Y(t) = X(t)\beta + \varepsilon(t)$$

This formulation is analogous to the functional linear model (Ramsay, Silverman, 2003) except for the constants β parameters and for the functions $y_i(t)$, $x_{ij}(t)$ which are quantile functions

while each $\mathcal{E}_i(t)$ is a residual function (distribution?) for all i=1, ..., n.

Parameters estimation - LS method using Wasserstein distance

According to the nature of the variables, for the parameters estimation, we propose to extend the Least Squares principle to the functional case using a typical metric between quantile functions:

$$d_W^2(x_i, x_j) = \int_0^1 (F_i^{-1}(t) - F_j^{-1}(t))^2 dt$$

Wasserstein 12 distance between two quantile functions

Interpretative decomposition of the distance in three components related to the *location – size* and *shape* parameters

$$d_W^2(x_i, x_j) := \int_0^1 \left(F_i^{-1}(t) - F_j^{-1}(t) \right)^2 dt =$$

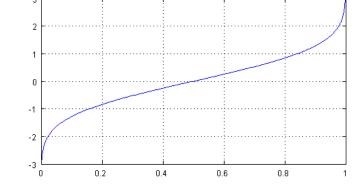
$$= \underbrace{\left(\overline{x}_i - \overline{x}_j \right)^2}_{Location} + \underbrace{\left(\sigma_i - \sigma_j \right)^2}_{Size} + \underbrace{2\sigma_i \sigma_j (1 - \rho(x_i, x_j))}_{Shape}$$

In *general* case of distributions

If the two distributions have the same shape:

$$d_W^2(x_i, x_j) := \underbrace{\left(\overline{x}_i - \overline{x}_j\right)^2}_{Location} + \underbrace{\left(\sigma_i - \sigma_j\right)^2}_{Size}$$

If they have the same size and shape: $d_W^2(x_i, x_j) := \underbrace{\left(\overline{x}_i - \overline{x}_j\right)^2}_{Location}$



Notations

$$x_i(t) = F_i^{-1}(t)$$
 quantile function of x_i

Mean and variance of the quantile function:

$$\overline{x}_{i} = \int_{0}^{1} x_{i}(t) dt$$

$$\overline{x}(t) = \frac{1}{n} \sum_{i=1}^{n} x_{i}(t) \quad \forall t \in [0,1]; \quad \overline{x} = \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{1} x_{i}(t) dt = \int_{0}^{1} \overline{x}(t) dt$$

$$\sigma_{x_{i}}^{2} = \int_{0}^{1} [x_{i}(t)]^{2} dt - [\overline{x}_{i}]^{2} \Rightarrow \int_{0}^{1} [x_{i}(t)]^{2} dt = \sigma_{x_{i}}^{2} + [\overline{x}_{i}]^{2}$$

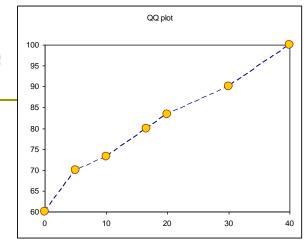
<u>Correlation</u> between quantile functions (x_i, x_j)

$$\rho(x_i, x_j) = \frac{\int_0^1 x_i(t) x_j(t) dt - \overline{x}_i \overline{x}_j}{\sigma_{x_i} \sigma_{x_j}} \Rightarrow \int_0^1 x_i(t) x_j(t) dt = \rho(x_i, x_j) \sigma_{x_i} \sigma_{x_j} + \overline{x}_i \overline{x}_j$$

If data are histograms the mean, variance and correlation

formulae are:

Empirical quantile function



Mean and variance of the quantile function:

$$\overline{x}_i = \int_0^1 x_i(t)dt \quad \Leftrightarrow \quad \overline{x}_i = \sum_l \pi_l c_{il}$$

$$\sigma_{x_i}^2 = \int_0^1 \left[x_i(t) \right]^2 dt - \left[\overline{x}_i \right]^2 \quad \Leftrightarrow \quad \sigma_{x_i}^2 = \sum_l \pi_l \left(c_{il}^2 + \frac{1}{3} r_{il}^2 \right) - \overline{x}_i^2$$

<u>Correlation</u> between quantile functions (x_i, x_j)

$$\rho(x_i, x_j) = \frac{\int_0^1 x_i(t) x_j(t) dt - \overline{x}_i \overline{x}_j}{\sigma_{x_i} \sigma_{x_j}} \Leftrightarrow \rho(x_i, x_j) = \frac{\sum_l \pi_l \left[c_{il} c_{jl} + \frac{1}{3} r_{il} r_{jl} \right] - \overline{x}_i \cdot \overline{x}_j}{\sigma_i \cdot \sigma_j}$$

Interpretation of the Linear Regression model

The regression model is here proposed to find the best linear transformation of the $X_i(t)$'s in order to predict Y(t)

$$y_i(t) = \beta_0 + \beta_1 x_{1i}(t) + \dots + \beta_p x_{pi}(t) + \varepsilon_i(t)$$

 $y_i(t), x_{1i}(t), ..., x_{pi}(t)$ are quantile functions and the estimated response variable $\hat{y}_i(t)$ is again a quantile function = linear combination of quantile functions - according to the aim of symbolic data analysis:

Input Symbolic data \Leftrightarrow Numerical/Symbolic method \Leftrightarrow Output Symbolic data (same nature of the input data)

Fitting linear regression model

Find a linear transformation of the quantile functions of x_{ij} (for j=1,...,p) in order to predict the quantile function of y_i i.e.:

$$\hat{y}_{i}(t) = \beta_{0} + \sum_{j=1}^{p} \beta_{j} x_{ij}(t) \quad \forall t \in [0,1]$$

It is worth of noting the linear transformation <u>is unique</u>: the parameters β_0 and β_j are estimated for all the x_{ij} and y_i distributions

A first problem:

Only if $\beta_i > 0$ a quantile function $\hat{y}_i(t)$ can be derived.

In order to overcome this problem, we propose a solution based on the decomposition of the Wasserstein distance and on the NNLS algorithm.

Solution

The quantile function can be decomposed as:

$$x_{ij}(t) = \overline{x}_{ij} + x_{ij}^{c}(t)$$
 where $x_{ij}^{c}(t) = x_{ij}(t) - \overline{x}_{ij}$ is the centered quantile function

□ Then, we propose the following regression model:

$$y_{i}(t) = \beta_{0} + \sum_{j=1}^{p} \beta_{j} \overline{x}_{ij} + \sum_{j=1}^{p} \gamma_{j} x_{ij}^{c}(t) + \epsilon_{i}(t)$$

$$\hat{y}_{i}(t)$$

$$0 \le t \le 1$$

Using the Wasserstein distance it is possible to set up a OLS method that returns the two sets of coefficients $(\beta_0, \beta_i, \gamma_i)$.

The error term:

a property of the Wasserstein distance decomposition

The squared error can be written according to the two components

$$\varepsilon_{i}^{2} = d_{W}^{2}(y_{i}, \hat{y}_{i}) = \int_{0}^{1} (y_{i}(t) - \hat{y}_{i}(t))^{2} dt =$$

$$= (\overline{y}_{i} - \hat{\overline{y}}_{i})^{2} + d_{W}^{2}(y_{i}^{c}, \hat{y}_{i}^{c})$$

Least Squares parameters estimation

$$\underset{\beta_{j},\gamma_{j}}{\operatorname{arg\,min}} f(\beta_{j},\gamma_{j}) = \sum_{i=1}^{n} \varepsilon_{i}^{2}(t) = \sum_{i=1}^{n} d_{W}^{2}\left(y_{i}(t), \hat{y}_{i}(t)\right)$$

$$SSE = f(\beta_{j}, \gamma_{j}) = \sum_{i=1}^{n} \int_{0}^{1} \left[\overline{y}_{i} + y_{i}^{c}(t) - \beta_{0} - \sum_{j=1}^{p} \beta_{j} \overline{x}_{ij} - \sum_{j=1}^{p} \gamma_{ij} x_{i}^{c}(t) \right]^{2} dt$$

Matrix notation:

$$SSE = \int_{0}^{1} \left[\overline{Y} + Y^{c}(t) - \overline{X}B - X^{c}(t)\Gamma \right]^{2} dt$$

The estimated parameters

Correlation between quantile functions x_i

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}; \quad \hat{\beta}_1 = \frac{\sum_{i=1}^n \overline{x}_i \overline{y}_i - n\overline{y} \overline{x}}{\sum_{i=1}^n \overline{x}_i^2 - n\overline{x}^2}; \quad \hat{\gamma}_1 = \frac{\sum_{i=1}^n \rho(x_i, y_i) \sigma_{x_i} \sigma_{y_i}}{\sum_{i=1}^n \sigma_{x_i}^2}$$

It is easy to see that:

$$\hat{\beta}_0, \hat{\beta}_1 \in \Re$$
 and $\hat{\gamma}_1 \geq 0$

$$\hat{\gamma}_1 \ge 0$$

Multiple regression estimated parameters

According to the properties of the Wasserstein distance between quantile functions, the elements of the product matrix $\left(\int_0^1 X^c(t)' X^c(t)\right)$ computed according to our definition of a inner product operator between two quantile functions x_{ij} and $x_{i'k}$:

$$\int_{0}^{1} x_{ij}(t) x_{i'k}(t) dt = \rho(x_{ij}, x_{i'k}) \sigma_{x_{ij}} \sigma_{x_{i'k}}$$

Then, the parameters are estimated under the constraint $\hat{\gamma}_j \ge 0$ (j=1,...,p) using the NNLS (Lawson , Hanson, 1974).

$$\hat{\mathbf{B}} = \left(\bar{X}'\bar{X}\right)^{-1}\bar{X}'\bar{Y}$$

$$\hat{\Gamma} = \begin{bmatrix} \int_{0}^{1} \left(\tilde{X}^{c}(t)'\tilde{X}^{c}(t)\right)dt \end{bmatrix}^{-1} \begin{bmatrix} \int_{0}^{1} \left(\tilde{X}^{c}(t)'Y^{c}(t)\right)dt \end{bmatrix}$$

$$\tilde{X}^{c} = \begin{cases} X^{c} & \text{if } \gamma_{j} > 0 \\ \text{otherwise it is a transformed matrix by NNLS} \end{cases}$$

Interpretation of the parameters

Regression parameters for the distribution mean locations

$$\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_p \in \Re$$

Shrinking factors for the variability

$$\hat{\gamma}_1,...,\hat{\gamma}_p \in \mathfrak{R}^+$$

ightharpoonup > 1 (< 1) the \hat{y}_i histogram has a greater (smaller) variability than the x_{ii} histogram.

Tools for the interpretation

The sum of squares of Y is

$$SS(Y) = \sum_{i=1}^{n} d_W^2 \left(y_i(t), \overline{y}(t) \right) = \sum_{i=1}^{n} \int_{0}^{1} \left[y_i(t) - \overline{y}(t) \right]^2 dt$$

In classical regression model, the SS(Y) is constituted by:

$$SS_{Error} + SS_{Regression}$$

Decomposition of SS(Y)

■ Being:
$$\hat{y}_i(t) = \beta_0 + \sum_{j=1}^p \beta_j \overline{x}_{ij} + \sum_{j=1}^p \gamma_j x_{ij}^c(t)$$

we obtain

$$SS(Y) = \sum_{i=1}^{n} d_{W}^{2} \left(y_{i}(t), \overline{y}(t) \right) = \underbrace{\sum_{i=1}^{n} \int_{0}^{1} \left[\hat{y}_{i}(t) - y_{i}(t) \right]^{2} dt}_{SS_{Error}} + \underbrace{\sum_{i=1}^{n} \int_{0}^{1} \left[\overline{y}(t) - \hat{y}_{i}(t) \right]^{2} dt}_{SS_{Regression}} \underbrace{\left[2n \int_{0}^{1} \overline{y}(t) \overline{e}(t) dt \right]}_{Bias}$$

$$\overline{e}(t) = \frac{1}{n} \sum_{i=1}^{n} \left(y_{i}(t) - \hat{y}_{i}(t) \right) \quad \forall t \in [0,1]$$

Average error function

The bias

The bias is due to different shapes of distributions:

$$bias = -2n \left[\sigma_{\overline{y}}^2 - \sum_{j=1}^p \hat{\gamma} \rho(\overline{x}_j^c(t), \overline{y}(t)) \sigma_{\overline{x}_j^c} \sigma_{\overline{y}} \right]$$
Correlation between the average quantile functions

bias=0 when all the histograms data have the same shape

That represents the *incapacity* of the linear transformation of fitting distributions that are <u>very different</u> in shape

A measure of fitting

□ Pseudo R²

Considering that

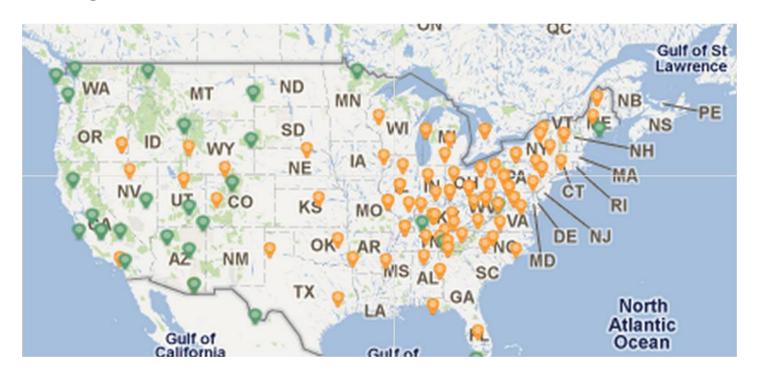
$$SS_{Regression} = \sum_{i=1}^{n} \left(\overline{y}_{i} - \overline{\hat{y}}_{i}\right)^{2} + \sum_{i=1}^{n} \int_{0}^{1} \left[\overline{y}^{c}(t) - \hat{y}_{i}^{c}(t)\right]^{2} dt - \int_{0}^{1} \overline{y}(t)\overline{e}(t)dt$$

We propose the following pseudo R²

$$PseudoR^2 = \min \left[\max \left[0; 1 - \frac{SS_{Error}}{SS(Y)} \right]; 1 \right].$$

An application on the Ozone concentration in 78 USA sites (http://java.epa.gov/castnet/)

Hourly monitoring of Ozone ground-level concentration and other meteorological variables



Forecasting OZONE levels

Ozone is a gas that can cause respiratory deseases. In the literature there exists studies that relates the OZONE level to the Temperature, the Wind speed and the Solar radiation.

Given the distribution of **TEMPERATURE** (C°), the distribution of **WIND SPEED** (meters per second) and the distribution of **SOLAR RADIATION** (watt per square meter), the main objective is to predict the distribution of **OZONE CONCENTRATION** (particles per billion) using a linear model.

We have chosen as period of observation the Summer seasons of 2010 and the central hours of the days (10 a.m. – 5 p.m.). The model is:

$$OZONE(t) = \beta_0 + \beta_1 \overline{TEMP} + \beta_2 \overline{WSPEED} + \beta_3 \overline{SORAD} + \beta_4 \overline{TEMP}^c(t) + \gamma_2 WSPEED^c(t) + \gamma_3 SORAD^c(t) + \varepsilon(t)$$

The estimated model

Wasserstein based LS (WASS-LS) (the current proposal)

In parentesis the 95% Bootstrap C.I.

$$OZONE(t) = \underbrace{ \textbf{2.9272 - 0.3456}}_{[-12.4;17.5]} \underbrace{ \overline{TEMP}}_{[-0.7888;0.1964]} + \underbrace{ \textbf{0.3948}}_{[-1,28;2,34]} \underbrace{ \overline{WSPEED}}_{[0,049;0,092]} + \underbrace{ \textbf{0.0704}}_{[0,049;0,092]} \underbrace{ \overline{SORAD}}_{(-1,28;2,34]} + \underbrace{ \textbf{0.0183}}_{[0,049;1,36]} \underbrace{ SORAD}^{c}(t) + \underbrace{ \textbf{0.0183}}_{[0,0118;0,024]} \underbrace{ SORAD}^{c$$

Billard (2006) regression (SREG)

$$OZONE = 26,49 + \underbrace{0,2358TEMP}_{[-0.03;0.51]} + \underbrace{1,555WSPEED}_{[0.0052;0.0117]} + \underbrace{0,0086}_{[0.0052;0.0117]} SORAD$$

Diagnostics

Diagnostics	WASS- LS	SREG	
Rsquare	NA	0.08	
Pseudo Rsquare	0.57	0.08*	$\Omega = \frac{\sum_{1=i}^{n} d_{W}^{2}(\hat{y}_{i}(t), \overline{Y})}{\sum_{1=i}^{n} d_{W}^{2}(y_{i}(t), \overline{Y})} \text{ where } \overline{Y} = n^{-1}$
Ω (Dias-Brito 2011)	0.74	NA	
RMSE_W	7.00	9,93*	1=i
RMSE_L2	1.06	1.58*	$RMSE_{W} = \sqrt{n^{-1} \sum_{i=1}^{n} d_{W}^{2} \left(y_{i}(t), \hat{y}_{i}(t) \right)}$
	$\sqrt{n^{-1} \sum_{i=1}^{n} d_2^2 \Big(F_i(y), \\ (y) - \hat{F}_i(y) \Big)^2 dy}$	$\widehat{F}_i(y)$	i=1

* The Billard model does not allow to compute directly a distribution. Given a set of input distributions, a Montecarlo experiment is needed to compute an output distribution.

Main references

- BILLARD, L. and DIDAY, E. (2006): Symbolic Data Analysis: Conceptual Statistics and Data Mining. Wiley Series in Computational Statistics. John Wiley & Sons.
- BOCK, H.H. and DIDAY, E. (2000): Analysis of Symbolic Data, Exploratory methods for extracting statistical information from complex data. Studies in Classification, Data Analysis and Knowledge Organisation, Springer-Verlag.
- CUESTA-ALBERTOS, J.A., MATRAN, C., TUERO-DIAZ, A. (1997): Optimal transportation plans and convergence in distribution. Journ. of Multiv. An., 60, 72–83.
- GIBBS, A.L. and SU, F.E. (2002): On choosing and bounding probability metrics. Intl. Stat. Rev. 7 (3), 419-435.
- IRPINO, A., LECHEVALLIER, Y. and VERDE, R. (2006): Dynamic clustering of histograms using Wasserstein metric. In: Rizzi, A., Vichi, M. (eds.) COMPSTAT 2006. Physica-Verlag, Berlin, 869–876.
- VERDE, R. and IRPINO, A.(2008): Comparing Histogram data using a Mahalanobis– Wasserstein distance. In: Brito, P. (eds.) COMPSTAT 2008. Physica–Verlag, Springer, Berlin, 77–89.
- VERDE, R. and IRPINO, A.(2010): Ordinary Least Squares for Histogram Data based on Wasserstein Distance COMPSTAT 2010
- DIAS, S. and BRITO P.,(2011) A new linear regression model for histogram-valued variables, ISI 2011

Thank you

- Rosanna Verde <u>rosanna.verde@unina2.it</u>
- Antonio Irpino <u>irpino@unina.it</u>



$$\rho(X_i, X_j) = \frac{\sum_{l} \pi_l \left[c_{il} c_{jl} + \frac{1}{3} r_{il} r_{jl} \right] - \overline{x}_i \cdot \overline{x}_j}{s_i \cdot s_j}$$