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Aims
Introduce:

o0 New distances to compare histogram (distribution) data in
the framework of the Symbolic Data Analysis — especially
the Wasserstein — Mallows’ 4 distance

Show:
0 Some properties of Wasserstein — Mallows’ 4 distance
Present:

0 Methodological approaches based on 4 distance

m Basic Statistics for histogram data (including intervals and
distributions as particular cases)

m Clustering methods:DCA and hierarchical (Ward criterion)

» Linear regression model: 4 as metric for Sum Square Errors
in OLS estimation method




Main Sources of histogram data

o Results of summary/clustering procedures
= From surveys
= From large databases

m From sensors
o Temperatures
o Pollutant concentration
o Network activity

o Data streams
= Description of time window data sequences
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o Image analysis 05

m Color bandwidths 0.4
0,3

o Confidentiality data 02
= Summary data - non punctual o




Histogram data as a particular case of modal
symbolic descriptions [Bock and Diday (2000)]

o Histogram data is a model for representing the empirical distribution
of a continuous variable Y partitioned into a set of contiguous I,
intervals (bins) with associated 7, weights.

A histogram is represented by a set of H ordered pairs (l,,w,)} such

that:
IhiE[Xh;Yh}; Y=Y + YYn€R 7, >0
hzlL,..J.,HIhI _[hr?ln”{zh}’hrjl]ax“{yh}} Z rr, =1
h=h"ILNI,. =Y h=1,..,H
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Comparison of two histogram data

o How do compare two units described by two histograms?

o A possibility is to use metrics developed for comparing probability
distributions
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Metrics used for the evaluation of the convergence of

two probability measures (Gibbs and Su, 2002)

Given:

- a domain Q on which is possible to define

- two measure p, v

- the density functions f and g

- the corresponding distribution functions F and G and
- a subdominant measure 2, like: A=(pu+v)/2,

Gibbs and Su (2002) present a review of the most used dissimilarities:

Abbreviation Metric

D Discrepancy

H Hellinger distance
I Relative entropy (or Kullback-Leibler divergence)
K Kolmogorov (or Uniform) metric

L Lévy metric

P Prokhorov metric

S Separation distance

TV Total variation distance

T W Wasserstein (or Kantorovich) metric >

Y2 x* distance




A suitable measure to compute the distance between
histograms: Wasserstein-Kantorovich metric

O we propose to use the Wasserstein-Kantorovich metric:

dy (1,0) :\/I(Fl(t)—Gl(t))z dt

0

0o in particular the derived 4 Mallow’s distance between two
quantile functions

d2 (u0)=[(F1©)-G*(1)) dt

o The main difficulties to compute this distance is the analytical
definition of the quantile function...

But in our case we treat especially with histogram data),
indeed...



Histograms are locally uniform

Having represented an histogram Y(i) as {(l;,7;),....(1n, ), ..., (1., 71,)}
(where H is the number of intervals of the support), we may define:
« the empirical density function f(y) as:

f(y)

T : _
" ifyely, V)

fh: Xh_yh T
0 otherwise o
o | Yy, Y,
e the empirical distribution function -
: W —W, . _
0 ifh=0 F(y)=wh+(y—l/h)¥ iff y <y<y,
Wy = Zh: ifh o1 Yh _Xh
V3 ifh=1..,m
= F(y) =t
e hence the empirical quantile function 0,75 |
(The inverse of the distribution function) 05
0,25

t—w
Filt)=y +¢(Vh—3_/h) where 0<w, <t<w,_, <1 F™ (1)

Zh
Wh _ Wh—l

0 10 20 30 40 50




Geometric interpretation

The comparison of two quantile functions associated with two
histograms requires the partition of the support of the two gf’'s into

m intervals with associated uniform density
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| T |, = [X" , yﬁ] l, = [le , y”] d2y (L Ij) m d2w (L7 1)
1 0.15 [0; 5] [60,70] 3908.33 586.25
2 0.15 [ 5;10] [70;73.3] 4115.46 617.32
3 0.30 [10; 16.6] [73.3;80] 4013.22 1203.97
4 0.10 [16.6:20] [80;83.3] 4013.22 401.32
5 0.20 [20;30] [83.3;90] 3801.63 760.33
6 0.10 [30;40] [90;100] 3600.00 360.00
3929.18

dvi (Y;.Y;) :iﬂldz(lli’ ) :Zmlﬂl (Cy _Clj)2 +%(rli _rlj)2

with 1 =[ ¥, % |

§

y

center and radius of |

Verde, Irpino, COMPSTAT2006




Multivariate distance

o Assuming independence among p variables we propose the
an extension of d4, distance to the multivariate case
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Average histogram based on d; Wasserstein
distance

o The barycenter (average) histogram Y(b) of a set of histogram data
Y(i) (i=1, ..., n) can be computed minimizing the Sum of Square
n

Distances f (Y (b*)) = Z dv%/ (Y (1),Y (b))

(like for a cloud of points in classical data analysis)

f(Y (b)) = iiﬂ] {(Cn —Cp,)° +%(rn - rlb)z:|

i=1 I=1

That is minimized when the usual first order conditions are satisfied:

—__Z”IZ( i —Cp) =0

ac,b
<

n n
= G, = n_lzcli y T = n—1Zr"
arlb 7Z'| Z - ): i=1 i=1

Y (b) :{([Clb — I Cyp "'rlb]’”l);---;([clb —lips Gy "‘rlb]’”l) ([Cmb Vb s G + 1, b]’ﬂ-m)}




Variance of the set of histograms Y (1)

o Determined Y(b) through the minimization problem

b* =arg min Zn:dvzv (Y (i),Y (b))

o The variance of the set of histogram data is:

n

o’ = Z iﬂl [(Cn _Clb)2 Jr%(rn — rlb)z:|

=1 =1




Clustering methods for Histogram data
based on Wasserstein distance

* Dynamic Clustering Algorithm
* Hierarchical method (Ward criterion)




Dynamic Clustering Algorithm

general schema of the “Nuées Dynamiques” (Diday 1972)

The algorithm aims to obtain a partition P of

o a set E of symbolic data in k clusters and

o a set L of k prototypes {G,,...,G,...,G,} that best represent the
clusters {C,,...,C,...,C } of the partition P

The algorithm optimizes a criterion A of fitting between prototypes
and clusters:

A(P",L) =Min{A(P,L)| P e P, L €L, }

where : P, is the set of all the partitions of E into k clusters and L, is the set of
k prototypes.

The algorithm executes alternatively:
an allocation step
and a representation step



Wasserstein distance for Clustering data according
to Dynamic Clustering algorithm classical schema

(a) Initialization
k prototypes Y(b,),...,Y(by) of L are randomly chosen

(b) Allocation step
For each histogram Y(i) of E the allocation index ¢ to the clusters is
computed and Y(i) is assigned to the cluster C, where:

(c) Representation step Wasserstein ¢, distance

For each cluster C, is identified the prototype Y(b,) of L that

minimizes Histogram prototype/
2 -
A, Y(B) =Y d2(r()Y()) \y barveenterof
o= histograms belonging
' to the cluster C,

(b) and (c) are repeated until the convergence




Property of Wasserstein distance:
Inertia decomposition

Being the prototype the barycenter and dv%/ is a squared
Euclidean distance, then

B PR is the inertia for
71 = Z; diy (Y (1), Y (b)). grouped data

Then, according to the Huygens’ theorem Tl can be decomposed
in Within and Between inertia

I'T=WI+4+ B[ =

Y 4

_ ST (Y)Y (b)) + gi:l|ch|d‘f;.r(mh),&f’(m).

h=1:1eC}y




Some results
Application on US monthly temperatures data set

o We have considered a dataset constituted by the “"Monthly Average
Temperatures recorded in the 48 states of US from 1895 to 2004 (Hawaii and
Alaska are not present in the dataset).

o The analysis consists of the following three steps:

1. Representation of the distributions of temperatures of each State for each month
by means of histograms;

2. Computing of the distance matrix using d?,;

3. DCA procedure to find the best partition P

4. Calinski Harabaz index is computed to compute the optimal humber k of clusters
5. Hierarchical clustering procedure based on the Ward criterion

FE LU

A | B | ¢ | pb | E | F | & | H | 1

1 |State coddmeasure |Year January  Febraury March April May June
| 2 | 1 2 1895 437 376 54,5 63,1 69.8 7
3 1 2 1896 44 1 479 525 67.9 75,7
| 4 | 1 2 1897 42,6 51,2 60,2 62 68.6 B
oo i . 5 | 1 2 1898 494 459 59 58,1 73.4 8
The original dataset is freely available | & 1 2 1399 444 39.9 552 616 75.8 7
- - - 7 1 2 1900 44 44 1 52,6 635 71,2 7
at the National Climatic Data Center 5] 1 BT T | R Ty T e
KR 1 2 1902 432 40,6 54,8 616 75,3 B
10 | 1 2 1903 436 48,2 592 60,7 69.4 7
| 11] 1 2 1904 47 492 58,2 60 69.6 7
website 12 1 2 1905 39.1 39.5 59.5 63.5 4.4 7

http://www1l.ncdc.noaa.gov/pu b/data/'_i:irs/d'rd964x.t'|_'npst;t)_(t




Histogram barycenter (prototype)
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Experimental results

BI(k)/(k-1)
WI(k)/(n—Fk)
Dynamic Clastering algorithm results: The first 5 columns represent the Quality

Partition index (min, max, means, median) on 100 iterations — the last one the best
value of Calinski-Harabaz index

CH(k) =

ki QFPI min QPl max OPFPI mean OFPI median OFPI std dev  Best CH
2 (.6482 (.6555 0.6527 0.6527 0.0014 44.07
3 0.806%9 (.5190 (0.8125 0.8124 0.00249 70.94
4 (.=445 (), 8666 (.8525 (.8522 0.0044 T2.02
5 (.=494 (.8924 (.8663 (.8646 0.00%0 77.65
G (=665 (.9086 (.5847 08811 0.0115 7005
7 08577 0.9144 (0, 9000 (0.9044 0.0126 GY.63
8 (.3535 (.9233 (0.9121 0.9135 0.0070 T0.70
4 0.9028 (.9350 0.9174 0.0168 0.0048 64,05
10 0.=917 (.9360 (.9205 (0.9202 0.0061 G081




Hierarchical clustering — according to the “Ward
criterion” - based on Wasserstein distance

o For example, we can apply the Ward criterion for a
hierarchical clustering of the set E of histogram data:

GG

dﬁ"m‘d(csvcf] — |C |_|_ |Gt| d%i-’(}f{bS)v}f(bt))

the procedure joins those two classes which minimize

Csl|C]
Cs[ +1C

TIC,UC) =TIC,) +TICy) + A3 (Y (b,). Y (b))



Hierarchical tree
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Final results and coloured map
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Regression model for histogram variables
based on Wasserstein distance




A Regression model for histogram data

Data = Model Fit + Residual

o Linear regression is a general method for
estimating/describing association between a continuous
outcome variable (dependent) and one or multiple predictors

in one equation.

Easy conceptual task with classic data
But what does it means when dealing with histogram data?

Billard, Diday, IFCS 2006

Verde, Irpino, COMPSTAT 2010; CLADAG 2011
Dias, Brito, ISI 2011

i a i aad




Regression with histograms variables:
a proposal in SDA framework

A solution was given by

Billard and Diday (2006)
o The model fit a linear t "

regression line throught
the mixture of the n
bivariate distributions

o Given a punctual value of

X it is possible to predict
the punctual value of Y




Linear Regression Model for histogram data:
our approach involves SDA as well as Functional Data Analysis (Verde, Irpino, 2010)

Given a histogram variable X,
we search for a linear
trasformation of X which
allows us to predict the

£

histogram variable Y
o For example: r ﬁ

temperatures observed i

region during a month,

is it possible to predict

temperature of another i ‘ ‘ i
month using a linear
transformation of the

given the histogram of
the distribution of the
histogram variable?

histogram by a
histogram




Multiple regression model for quantile functions

Our concurrent multiple regression model is:
Quantile functions

p
associated to
'BO " Z;* & (t) histogram/ distribution
|=

data
in matrix notation:

Y(t)=X(t)5+&(t)

This formulation is analogous to the functional linear model (Ramsay,
Silverman, 2003) except for the constants 3 parameters and for the

functiors_Y;(t), X;i(t) which are guantile functions >

while each &(t) is a residual function (distribution?) for all i=/, ..., n.




Parameters estimation - L.S method using Wasserstein
distance

According to the nature of the variables, for the
parameters estimation, we propose to extend the Least
Squares principle to the functional case using a typical
metric between quantile functions:

e )
1 , Wasserstein 12 distance
d2 (%)= (Fi‘l(t)— Fj_l(t)) dt between two quantile
0 functions

- _/




Interpretative decomposition of the distance in three components
related to the location — size and shape parameters

1
2 i ~1 1 2
dz (x,X;) = j(lzi (t)— F, (1)) dt =
0 In general
z(i —X. )2 +(0'. —0'.)2 +20.0. (1— p(X, X)) case of
AN AP AL N S distributions
Location Size Shape
If the two distributions have the same shape: .|~
2 n N7 N7 2 2 -30 UI2 UI4 U:ﬁ U:":!
dy (X, X;) .=(xi —xj) +(ai —aj)
Loc;lrtion S?;e 5
2 (v <
If they have the same size and shape: dy (X, Xj) = (Xi — X )

Location




Notations

e . .
@) — Fiy quantile function of x;

Mean and variance of the quantile function:

jx(t)dt
67 - Zn:x(t) vte[01] X==3 jxi(t)dt:jx(t)dt

Ny

o

+IXT

Correlation between quantile functions (X; , Xj)

jx(t) -[x] :j[x(t)

0

4 1 )
[x®x Odt-xx,
P, x;) =1 = [ % ()% (O)dt = p(x, x;)0, 7, +XX,
o, O b

\_ X X 0 )




If data are histograms the mean, variance and correlation

formulae are: p—

100

\
O

Empirical quantile | | p
function e

Mean and variance of the quantile function: | ] /

0 10 20 30

X :jxi (Hdt < X :Z”|Ci|

:j‘[xi(t)]zdt_[ii]2 <~ Gfizzﬂl(cizl"‘%rnzj_iiz

Correlation between quantile functions (X;, X;)

[ @x, Odt-x%, > {C c +3r..r,.}—7i-7,-

P, X;) =2 < p(X, %) =—
O, O O.'0.




Interpretation of the Linear Regression model

o The regression model is here proposed to find the best linear
transformation of the X;(t)’s in order to predict Y(t)

yi(t) — IBO + ﬂlxli(t) T :Bpxpi(t) T &i (t)

Yi(t), X4i(0), ..., X,i(t) are quantile functions and the estimated
response varlable:ng is again a quantile functior>= linear
combination of quantile functions - according to the aim of
symbolic data analysis:

Input Symbolic data < Numerical/ Symbolic method < Output Symbolic data
(same nature of the input data)




Fitting linear regression model

o Find a linear transformation of the quantile functions
of x; (forj=1,...p) in order to predict the quantile
function of y; i.e.:

5.0= 5o+ >y ® Vtelo )

It is worth of noting the linear transformation is unique: the
parameters S,and ,81 are estimated for all the X and vy,
distributions

o A first problem:
Only if f; > 0 a quantile function Y,(t) can be derived.

In order to overcome this problem, we propose a solution based
on the decomposition of the Wasserstein distance and on the
NNLS algorithm.



Solution

o The quantile function can be decomposed as:

X; () = X, +x; (t) where

x; (t) = x; (t) —X; isthe centered quantile function
o Then, we propose the following regression model:

[ Y0 =5+ A%, +_iy,—x:;<t>+ei(t)] D<t<1

i (1)

o Using the Wasserstein distance it is possible to set up a OLS
method that returns the two sets of coefficients (5, B, 7).




The error term:

a property of the Wasserstein distance decomposition

o The squared error can be written according to the
two components

g8 =di (v, 9) = [ (i) =9 ()" dt =

— yi_?i 2+dV%/(in1in)
(%~ %)




Least Squares parameters estimation

argmin f(5;,7;) = Zé‘ (t) = Zd (vi(®), 9: (1)

Bi7i

n 1

SSE = 1(8,,7,) =Y {yi SACN I WA —iyi,-xf(t)} o

i=1 0
Matrix notation:

SSE =j[V+YC(t)— XB-X° ()T | dt




The estimated parameters |
Correlation between




Multiple regression estimated parameters

According to the properties of the Wasserstein distance between
quantile functions, the elements of the product matrix J. XE(t)' X(t)
computed according to our definition of a inner product operator
between two quantile functions x; and X;:

[ Jj X;i (0%, (0)dt =p(X;, Xi'k)Gxij Oy.. ]

Then, the parameters are estimated under the constraint 791- >0 (=1,.., p)
using the NNLS (Lawson , Hanson, 1974).

B=(X'X) XY
[= H(x (t)' X)) dt} ﬁ (Xe()ye (t))dt}

otherwise It is a transformed matrix by NNLS



Interpretation of the parameters

O Regression parameters for the distribution mean
locations

Pos Prros By € R

o Shrinking factors for the variability
Viveen ¥y €R'

o> 1 (< 1) they. histogram has a greater
(smaller) variability than the x; histogram.




Tools for the interpretation

0 The sum of squares of Y is

SS() = > (%, ®.5®) = X [[%® - O d

i=1l o

In classical regression model, the SS(Y) is
constituted by:

SS. +SS

Error Regression




Decomposition of SS(Y)

- . A p —_— p C
0 Being: yi(t):ﬁo"'zlgjxij+Z7/jxii(t)
j=1 j=1
O we obtain

SS(Y) =D (¥, (1), ) =

>

O'—.I—‘

[9,0)-y,®)] dt+

~
SSError

[ -9, ®)] dt£2n[ yt)e(t)t

SSgegression N Bis
502> (4 O-50) Ve[

i=1

>

O'—;}—‘

+
=1

Average error function




The bias

o The bias is due to different shapes of distributions:

P
bias=-2n| o2 -> 7

j=1

;

O

X
]

Oy

1 Correlation between

the average quantile
functions

o bias=0 when all the histograms data have the

same shape

That represents the incapacity of the linear transformation of
fitting distributions that are very different in shape Q




A measure of fitting

0 Pseudo R?
Considering that

SSRegression = anl(y o §i )2 +

n

O!—.H

VO -9 @ | dt- [yOR(

=1

We propose the following pseudo R2

_SSError l
SS(Y) ||

PseudoR? = min| max| 0:1




An application on the Ozone concentration
iﬂ 78 USA Sit@S (http://java.epa.gov/castnet/)

Hourly monitoring of Ozone ground-level concentration and other
meteorological variables

QX PR Y
el W B LV gt
{3 8)

e 1




Forecasting OZONE levels

Ozone is a gas that can cause respiratory deseases.
In the literature there exists studies that relates the OZONE level
to the Temperature, the Wind speed and the Solar radiation.

Given the distribution of TEMPERATURE (C°), the distribution of
WIND SPEED (meters per second) and the distribution of
SOLAR RADIATION (watt per square meter), the main
objective is to predict the distribution of OZONE
CONCENTRATION (particles per billion) using a linear model.

We have chosen as period of observation the Summer seasons of
2010 and the central hours of the days (10 a.m. - 5 p.m.).
The model is:

OZONE(t)=f,+ B, TEMP  + B,WSPEED + ,SORAD +
+7, TEMP®(t) +y, WSPEED®(t) + 7, SORAD®(t) + £(t)




The estimated model

Wasserstein based LS (WASS-LS)

(the current proposal)
In parentesis the 95% Bootstrap C.I.

OZONE(t) =
2.9272- 0.3456 TEMP + 0.3948WSPEED + 0.0704 SORAD +
— — — —
[-12.4;17.5] [-0.7888;0.1964] [-1,28;2,34] [0,049;0,092]
+0.9153 TEMP® () +1.8867 WSPEED® (t) + 0.0183 SORAD® (t)
— — —
[0,49;1,36] [1,08;3,20] [0,0118;0,024]

Billard (2006) regression (SREG)

OZONE = 26,49 +0,2358TEMP +1,555WSPEED + 0,0086 SORAD

—— —
[19.17;34.74]  [-0.03;0.51] [0.78;3.5] [0.0052;0.0117]




Diagnostics

Rsquare NA 0.08

Pseudo Rsquare 0.57 0.08* .

Q 0.74 NA > d (%:(0).Y) .

(Dias-Brito Q=L — whereY =n">y,

2011) zdvfl(yi(t)’y) =
1=i

RMSE_W 7.00 9,93* Xy

RMSEXZ‘ 1.06 1.58% RMSE, = \/ 1Zd (3 (.9,0)
RMSE, , = n_lidzz(Fi(Y)’ 'fu(Y))

a2 = [(F(-F(y) dy
* The Billard model does not allow to compute directly a
distribution. Given a set of input distributions, a Montecarlo
experiment is needed to compute an output distribution.
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