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What is Cluster Analysis?

I Software package?

I Collection of Computer Algorithms?

I Type of multivariate statistical analysis?

I Branch of discrete mathematics?

I Should not be recognized as a separate discipline.

Want this to be a discipline. So need a mathematical model.
Two views:

1. Input data has a true hierarchical structure.

I Data you are given has possible errors.
I Clustering estimates the true structure.

2. Cluster analysis suggests possible internal structure for data.
The suggestions may or may not be valid.
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Background From Jardine and Sibson

Book: Mathematical Taxonomy by N. Jardine and R. Sibson,
Wiley, New York, 1971. This got me started.

Underlying finite set to be classified: E
Σ(E ) the reflexive symmetric relations on E .

Dissimilarity coefficient (DC) d : E×E → <+
0

• d(a, b) = d(b, a)
• d(a, a) = 0

d is an ultrametric if also
• d(a, b) ≤ max{d(a, c), d(b, c)} for all a, b, c ∈ E .

Numerically stratified clustering (NSC) Td : <+
0 → Σ(E ) a residual

mapping (lattice theoretic idea) in that
• There is an h such that Td(h) = E×E .
• Td(

∧
hi ) =

⋂
Td(hi ).

NSCs and DCs are in one-one correspondence.

In the book a cluster method is viewed as a transformation of
a DC to an ultrametric. Careful (but limited) mathematical model.
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Connection with Symbolic Data Analysis

• If every object in E has a specified collection of attributes, it
is straightforward to compute a DC.

• What if there is some variation or uncertainty involving the
values of the attributes within an object?

• One could take a mean, or a median, or some other statistic
summarizing the data belonging to each object.

This involves a summary before one classifies anything.
Might be wise to defer any summary as long as possible.

One might view the attributes as taking values in an interval.
or one might view them as belonging to a distribution. This places
us into the framework of symbolic data analysis, but it also puts us
into a discipline called Percentile Clustering (Janowitz and
Schweizer, Math. Social Sciences 18, pp. 135-186). Included here
would be dissimilarities taking values in a confidence interval. In
these cases, we need to be able to have DCs taking values in a
poset with smallest member 0.
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What is a dissimilarity coefficient?

Mapping d from ordered pairs of objects to some partially
ordered set (Often the non-negative reals).

Higher values of d(x , y) make (x , y) more dissimilar (less
similar). So d(x , y) measures the dissimilarity.

I Another view:

I d(x , y) represents the levels at which (x , y) is a candidate for
clustering.

I Basic property: If (x , y) is a candidate for clustering at level
h, and h ≤ k, then (x , y) is a candidate at level k. k provides
a less strict criterion.

I Cluster method: At each level h, decide which cluster
candidates actually get clustered. View clusters as possible
classifications.
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Clustering Based on a Poset
L is poset with smallest element 0 where dissimilarities measured.

F(L) = order filters of L ordered by
F ≤ G ⇐⇒ G ⊆ F .
F 6= ∅, x ∈ F , x ≤ y implies y ∈ F .
Principal filter: Fh = {y ∈ L : y ≥ h}.
F(L) is a complete distributive lattice.

DC: D : E×E → F(L) such that
D(a, b) = D(b, a)
D(a, a) ≤ D(a, b). Might want D(a, a) = F0.

Can take D(a, b) to be principal filters. Ultrametric if also
D(a, b) ≤ D(a, c) ∨ D(b, c) for all a, b, c ∈ E .

SD : L → Σ(E ) (Symmetric relations on E ).
SD gives cluster candidates at level h.

SD(h) = {(a, b) : h ∈ D(a, b)}.
h ≤ k implies SD(h) ⊆ SD(k).
If L has a largest member 1, then SD(1) = E×E .

h ∈ D(a, b) ⇐⇒ (a, b) ∈ SD(h).
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Detour into theory

If we take DCs as mappings d : E×E → L where L is poset
with 0, single linkage clustering not valid. Single linkage operation:

For h ∈ L, let Rh = {(a, b) : d(a, b) ≤ h}. Output has at h
the transitive relation Eh = γ(Rh) generated by Rh. For this to
work γ(Rh ∩ Rk) must equal γ(Rh) ∩ γ(Rk).

Not true unless L is a chain.
One solution: For L a chain, the map Td : L → Σ(E ) has the
property that the preimage of every principal filter is a principal
filter. Can relax this to assume that each pre-image is the finite
union of principal filters.

(Applications of the theory of partially ordered sets to cluster
analysis, Banach Center Publications 9, 1982, pp. 305-319.)

Another solution (Present view): Assume d takes values in F(L).
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An example involving numerical data

Water Protein Fat Lactose Ash

1. Bison 86.9 4.8 1.7 5.7 0.9
2. Buffalo 82.1 5.9 7.9 4.7 0.78
3. Camel 87.7 3.5 3.4 4.8 0.71
4. Cat 81.6 10.1 6.3 4.4 0.75
5. Deer 65.9 10.4 19.7 2.6 1.4
6. Dog 76.3 9.3 9.5 3 1.2
7. Dolphin 44.9 10.6 34.9 0.9 0.53
8. Donkey 90.3 1.7 1.4 6.2 0.4

Composition of Mammal Milk (Clustan)
Original data has 25 mammal species. Just wanted short example.

Used DC taking values in <+
0

5
where <+

0 denotes non-negative
reals. Here is construction. Used squared Euclidean distance on
each attribute to construct five separate DCs, then represent them
as columns in a single dissimilarity matrix having 28 rows and 5

columns and denoted P. Use vector ordering inherited from <+
0

5
.
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A Version of Complete Linkage Clustering

We illustrate complete linkage clustering with the data at
hand. The clusters implied by the minimal members M(P) of P
are all formed. We then remove them from P to form P1.
members of P1. If k is such a level, we look at the clusters implied
by the members of M(P) strictly under k. These are all formed.
To get the clusters at level k, we merge any clusters for which all
links have been made (including any links at level k), and continue
the process. We illustrate this numerically. Here is the list of edges
of P.

level edge level edge level edge level edge

1. 12 8. 23 15. 35 22. 48
2. 13 9. 24 16. 36 23. 56
3. 14 10. 25 17. 37 24. 57
4. 15 11. 26 18. 38 25. 58
5. 16 12. 27 19. 45 26. 67
6. 17 13. 28 20. 46 27. 68
7. 18 14. 34 21. 47 28. 78
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Sample Calculations

The minimal members of M(P) (height 0) are levels
{1, 2, 7, 8, 9, 11, 19, 20, 21, 23, 24}. The next layer (height 1) of
levels is {3, 5, 12, 14, 18, 26}.

Let’s examine the clusters for these levels.
level 3 lies only above level 9. Thus we must cluster 24. level 3 has
as a cluster candidate 14. In single linkage clustering we would
have the cluster 124. But complete linkage would not merge 14
with 24 since there is no link between 1 and 2. Thus at level 3, 24
is the only non-singleton cluster.
Similar reasoning shows that at level 5, we have the cluster 12346,
while complete linkage only has 1234. At level 12, we have

SL: 12347, 56 and CL: 1234, 56.
level Single Complete

14 234 24
18 138 13
26 123, 4567 123, 456
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The nontrivial clusters
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Figure: The nontrivial clusters (ignoring levels at which they occur)

Remember: Clusters just suggest structure!

1. Bison 5. Deer
2. Buffalo 6. Dog
3. Camel 7. Dolphin
4. Cat 8. Donkey
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Figure: Complete linkage using standard clustering
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Figure: Single linkage using standard clustering
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Vietnam casualties

Here is a second example. It relates to US and South
Vietnamese combat deaths during the Viet Nam war over a period
of 6 years. The data was taken from Hartigan, Clustering
Algorithms, (Wiley, New York, 1975), p. 175. Will not repeat data
here. Example was discussed in Janowitz and Schweizer, Ordinal
and Percentile Clustering, Math. Social Sciences, 18 (1989),
135-186.
Description: 72 monthly totals, one for US and one for South Viet
Nam. Period was from January, 1966 to December, 1971. Will
label the data with the letters a, b, c , d , e, f , g , h, i , j , k, l in
chronological order.
Description of technique: We used Squared Euclidean distance to
create a 72 by 72 dissimilarity matrix d̂ . The dissimilarity we are
after is then based on the 12 groups of data (6 per group). Thus
to get the dissimilarity D(a, b), we use the distribution formed by
the 36 entries {d̂(i , j) : 1 ≤ i ≤ 6, 7 ≤ j ≤ 12}.
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We take the 30th, 50th and 70th percentiles of this
distribution. Thus the DC D is a 66 by 3 array of numbers. We
order this array with the vector space ordering
x ≤ y ⇐⇒ row for x ≤ row for y . We label the groups with the
letters from a to l, and these represent in chronological order the
months

JAN-JUN, 1966, JUL-DEC, 1966, . . . , JUL-DEC, 1971.

This poset has one minimal member: the triple for ab, and two
maximal members, the triples for be, and el. Let’s see how the
complete linkage algorithms works.

We begin by clustering ab at the level (340.3, 451.7, 1087.6).
This level is not only minimal, it is the smallest member of D.
There is only one entry at height 2, and it corresponds to cd. Thus
at that level, we have the clusters ab and cd.
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Height 3: the pairs bc, hj, jl.
For bc: bc > cd > ab, so we have the clusters ab, cd.

ab and cd do not merge to form abcd because no links at bd,
ad, ac.
For hj: hj > cd > ab, so clusters ab, cd, hj are formed.
For jl: jl > cd > ab so clusters ab, cd, jl.

Groups e, i and k seem to not cluster with other entries. The
clusters that want to form involve ab, cd, fg, and hjl.

The next slide gives a graphic view of the data, and following
that a slide that looks at the various clusterings.
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A Graphic View of the Data
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Figure: Vietnam Casualty Data

Note: Blue is US casualties, red is SVN.
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A display of the clusters
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Figure: The Nontrivial Clusters
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Figure: Clustering Based on Medians of each Group
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