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Outline of talk

1. Recall basic definitions pertaining to the consensus

of classification structures

2. Review some results for hierarchies and weak hier-

archies

3. Consensus results for pyramids

2



1. Basic definitions and notation

A (simple) hypergraph on a finite set S is a set of

non-empty subsets (the clusters) of S. Let H denote

a set of hypergraphs on S such that S ∈ H for every

H ∈ H.

A consensus function on H is a mapping C : Hk → H

where k is a fixed positive integer. Elements of Hk are

called profiles and are denoted by π = (H1, . . . , Hk).
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Our focus is on counting rules on H, which are con-

sensus functions C whereby a cluster A is placed in

C(π) if it satisfies criteria based on the number of

times it appears among hypergraphs making up π.
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A hierarchy is a hypergraph T with {x} ∈ T for all

x ∈ S, S ∈ T , and A ∩B ∈ {∅, A, B} for all A, B ∈ T . T

denotes the set of all hierarchies on S.

A weak hierarchy (Bandelt and Dress) W on S is a

hypergraph with {x} ∈ W for all x ∈ S, S ∈ W and

A ∩ B ∩ C ∈ {A ∩ B, A ∩ C, B ∩ C} for all A, B, C ∈ W .

W denotes the set of all weak hierarchies on S.
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A pyramid (Diday) on S is a hypergraph P with {x} ∈

P for all x ∈ S, S ∈ P , A∩B ∈ P ∪{∅} for all A, B ∈ P ,

and there is a total ordering of S such that each cluster

of P is an interval in this ordering. The set of all

pyramids on S is denoted by P.

It can be easily shown that T ⊂ P ⊂ W.
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2. Counting rules for T and W

Let A ⊆ S and π = (H1, ..., Hk) ∈ Hk. The index of A

in π is

γ(A, π) =
|{i : A ∈ Hi}|

k
.

Counting rules can be described by a threshold t,

where Mt : Hk →H is defined by

A ∈ Mt(π) if and only if γ(A, π) > t.
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Domain and Range concerns for Mt

When domain of Mt is T k, what t will guarantee that

Mt(π) ∈ T for all π ∈ T k?

Answer: t = 1
2 and yields the Majority Rule (Margush

& McMorris, 1981). Abusing notation we allow t = 1

(really t−ε and have M1 the Unanimity Rule commonly

called the strict consensus in the biological literature.
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Domain and Range concerns for Mt

When domain of Mt is T k, what t will guarantee that

Mt(π) ∈ T for all π ∈ T k?

Answer: t = 1
2 and yields the Majority Rule (Mar-

gush & McMorris, 1981). (Abusing notation we allow

t = 1 (really t − ε) and have M1 the Unanimity Rule

commonly called the strict consensus in the biological
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A new axiomatic characterization of the majority rule

for hierarchies has been obtained. (McMorris & Pow-

ers, J. Classification submitted 2007)
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Domain and Range concerns for Mt

When domain of Mt is Wk, what t will guarantee that

Mt(π) ∈ W for all π ∈ Wk?

Answer: t = 2
3 . (Bandelt & Dress, 1989)
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Along these lines I should mention the important,

more general, work of Barthélemy, Leclerc, Monjardet,

et al. in France, and Janowitz, et al. in the US.
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3. What about counting rules for P?

When domain of Mt is Pk, what t will guarantee that

Mt(π) ∈ P for all π ∈ Pk?

Answer: t = 1. (Lehel, McMorris & Powers, 1998)

All was not lost however, and other types of consensus

rules for P were developed.
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What next?

Motivated by talks at IFCS 2004 and IFCS 2006 by

Diday where he introduced “spatial pyramids”: where

the base interval is replaced by a type of grid-graph,

and the clusters replaced by convex subgrids.
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What next?

Motivated by talks at IFCS 2004 and IFCS 2006 by

Diday where he introduced “spatial pyramids”: where

the base interval is replaced by a type of grid-graph,

and the clusters replaced by certain convex subgrids.

The spatial pyramids can nicely be visualized, as has

been shown by Diday.
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In the Springer volume commemorating this Work-

shop, Powers and I take insight from previous work of

ours (Lehel, McMorris & Powers, 1998)where we pro-

posed the study of consensus of hypergraphs with the

clusters taken as convex subsets (i.e.,subtrees) of a

tree. We study the consensus of the simplest type of

tree hypergraph (a when the tree is a star). Although

general tree hypergraphs do not have the nice visual-

ization properties of Diday’s spatial pyramids, perhaps

on “tree-like grids” a more spatial version may be pos-

sible. This is left for future investigation . . . .
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A simple tree star.
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A star tree hypergraph is a tree hypergraph where the

underlying tree is a star graph (a graph with n + 1

vertices, with n vertices of degree one and one vertex

of degree n, the central vertex). Let S be the set of

all star tree hypergraphs with vertex set S and |S| ≥ 3.

We are concerned about M1
2
(π) where π ∈ Sk.

26



Let H0 denote the hypergraph on S with no non-trivial

clusters and for any H ∈ S with H 6= H0 and T ⊆ S,

let

T ∩H = T ∩A1 ∩A2 ∩ . . . ∩Ar

where A1, A2, . . . , Ar are the nontrivial clusters of H.

For any nonempty subset S ′ of S, let

c(S ′) = min{|T | : T ⊂ S and T∩H 6= ∅ ∀H ∈ S ′ with H 6= H0}.
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Result: For any nonempty subset S ′ of S, if c(S ′) ≤ 2,

thenM1
2
(π) ∈ S for all π ∈ (S ′)k. Moreover, if k ≥ 3,

then there exists a subset S ′ of S such that c(S ′) = 3

and M1
2
(π) 6∈ S for some π ∈ (S ′)k.
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THE BEGINNING

THANK YOU EDWIN FOR YOUR WONDERFUL RESEARCH

IDEAS OVER THE MANY YEARS!
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THANK YOU EDWIN DIDAY FOR YOUR WONDERFUL RE-

SEARCH IDEAS OVER THE MANY YEARS!
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