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1. Clustering with SSQ and the k-means algorithm

Given: O ={1,...,n} set of n objects
x1,...,x, € IRY n data vectors
Problem: Determine a partition C = (C', ..., C}) of O

with k classes C; C O, 1 =1, ...,k
characterized by class prototypes: Z = (z1, ..., 21)

Clustering criterion: SSQ, variance criterion, trace criterion, inertie, ...

k
o =2 :
9(€) = S°3 Nl — e min

1=1 leC;

with class centroids (class means) 2z} = Z¢,, ..., 2, = T¢,.
Two-parameter form:

k

e 2 :
g(C, Z) = E E ||z — 2| —  min
; C,2
1=1 [(eC

Remark: ¢(C) = g(C, Z%)



The well-known k-means algorithm
® produces a sequence of partitions/prototype systems:

t =0:

c0) z0) o) =)

Start from an arbitrary initial partition C*) = (C,", ..., C,io)) of O

t—t+1:

(1) Calculate system Z) of class centroids for C*):

(1) _ = _ 1

(11) Determine the min-dist partition C!*!) for Z();

OV = e O |||z — 2"|| = min [Ja, — 21|}

Stopping:
lterate until stationarity, i.e., g(C)) = g(C*1)

Problem A:
g(C", Z) — minz

Problem B:
g(C, ZW) — ming




k
. 12 :
9(C,2) = > llee—=zullP — wmin

1=1 [(eC;

Remarks: This two-parameter form contains a continuous (Z) and a discrete (C) variable.

The k-means algorithm is a relaxation algorithm (in the mathematical sense).

Theorem:
The k-means algorithm AR Z(C(t))
Cctl) = c(z) t=0,1,2,..

produces m-partitions C") and prototype systems Z
with steadily decreasing criterion values:

g(CWy = g(c®, 20y > g(ctH) ZM) > g+ Zt+D) = g(ct+Y)



Continuous version of the SSQ criterion:

Given: A random vector X in IR” with known distribution P, density f(x)

Problem: Find an 'optimal’ partition B = (B, ..., B) of IRF
with k& Borel sets (classes) B; C IR", i =1,...,k
characterized by class prototypes: Z = (21, ..., 21)

e Continuous version of SSQ) criterion:

k
G(B) = Y / e~ BIX|X € BJP dP@) — min

with class centroids (expectations) zi = F[X|X € By, ..., z; = E[X|X € Byl.

e Two-parameter form:

B,Z

k
G(B,Z) = Z/B |z — z||* dP(z) — min
i—1 / Bi

—> Continuous version of the k-means algorithm
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2. Continuous SSQ) clustering

for stratified sampling
Dalenius (1950), Dalenius/Gurney (1951)

Given: A random variable (income) X in IR with density f(x)

u = E[X], 02 :=Var(X) M)

Problem: Estimate unknown expected income i by using n samples (persons)

e Strategy I: Simple random sampling
Sample n persons, observed income values z1, ..., z,
Estimator: =T =33

Performance: Elia) = p unbiasedness
Var(f) = o*/n.



e Strategy II: Stratified sampling

Partitioning IR into & classes (strata): B1, ..., B},
Class probabilities: pq, ...., p. M(az)

Sampling from stratum B;: Y, ~ X|X € B; By --- B;j--- By
0? :=Var(Y;) = Var(X|X € B;)

Sampling: n; samples from B;: 1, ..., Yin, (Zle n;, =n)
D R

Estimator: [ = Zle Di+ [

>

Performance: E|1] = i (unbiasedness)
A PP p
Var(i) =5, 2ot = 300 [ o= pfapa) < o
! i=1 'Y Pi

e Strategy III: Proportional stratified sampling

Use sample sizes proportional to class frequencies: n; = n - p; —



e Strategy III: Proportional stratified sampling

Use sample sizes proportional to class frequencies: n; = n - p;

—> Resulting variance:

Var(i) = 20, [, (e — p)dP(a) = +-G(B) — ming

Implication:

Optimum stratification = Optimum SSQ) clustering

Remark: Dalenius did not use the k-means algorithm for determining 5!



3. Les origines: historical k-means approaches

e Steinhaus (1956): ’
X C IR” a solid (mechanics; similarly: anthropology, industry)

with mass distribution density f(x)

Problem:
Dissecting X into k parts By, ..., B;

such that sum of class-specific inertias is minimized:

k
G(B) = E;/B o — E[X|X € B]|? f(x)dz — min

Steinhaus proposes:  Continuous version of k-means algorithm

Steinhaus discusses: — Existence of a solution
— Uniqueness of the solution
— Asymptotics for £ — o0



e Lloyd (1957):
Quantization in information transmission: Pulse-code modulation

Problem: Transmitting a p-dimensional random signal X with density f(x)

Method:

Instead of transmitting the original message (value) x
— we select k different fixed points (code vectors) z1, ..., z;, € IR?

— we determine the (index of the) code vector that is closest to x:

— transmit only the index i(x)
— and decode the message x by the code vector = := z;(,).

Expected transmission (approximation) error:
(s 2s) = / min { ||z — 2|2 M(@)de = G( B(Z), Z)
re J=1k

where B(Z) is the minimum-distance partition of IR” generated by Z = {21, ..., 2, }.

Lloyd’s Method I: Continuous version of k-means (in R')
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e Forgy (1965), Jancey (1966):

Taxonomy of genus Phyllota Benth. (Papillionaceae)

x1, ..., T, are feature vectors characterizing n butterflies
Forgy's lecture proposes the discrete k-means algorithm

(implying the SSQ clustering criterion only implicitly!)

A strange story:
— only indirect communications by Jancey, Anderberg, MacQueen

— nevertheless often cited in the data analysis literature
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Terminology:

k-means: — iterated minimum-distance partitioning (Bock 1974)
— nuées dynamiques (Diday et al. 1974)
— dynamic clusters method (Diday et al. 1973)
— nearest centroid sorting (Anderberg 1974)
— HMEANS (Spath 1975)

However: MacQueen (1967) has coined
the term 'k-means algorithm’ for a sequential version:

— Processing the data points z, in a sequential order: s=1,2,...
— Using the first k data points as 'singleton’ classes (= centroids)
— Assigning a new data point x4, to the closest class centroid from step s

— Updating the corresponding class centroid after the assignment

Various authors use 'k-means’ in this latter (and similar) sense
(Chernoff 1970, Sokal 1975)
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4. La Belle Epoque: Generalized k-means algorithms

for clustering criteria of the type:

9(C.2) = > Y dk,z) — i /

1=1 kel

where Z = (21, ..., 2,,) is a system of 'class prototypes’

and  d(k, z;) = dissimilarity between
— the object k (the data point z) and
— the class C; (the class prototype z;)

Great flexibility in the choice of d and the structure of prototypes z;:

— Other metrics than Euclidean metric

— Other definitions of a 'class prototype’ (subsets of objects, hyperplanes,...)
— Probabilistic clustering models (centroids <» m.l. estimation)

— New data types: similarity /dissimilarity matrices, symbolic data, ...

— Fuzzy clustering
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e Maranzana (1963): k-means in a graph-theoretical setting

Situation: Industrial network with n factories: O = {1,...,n}

Pairwise distances d(/,1),
e.g., minimum road distance, transportation costs

Problem: Transporting commodities from the factories
to k suitable warehouses as follows:
— Partition O into k classes (', ..., C}.

— Select, for each class C;, one factory z; € O as 'class-specific warehouse’
(products from a factory ¢ € C; are transported to z; for storing)

— Minimize the transportation costs:

k
= ZZ d(l, z;) — Ignzp with z; € C; fori =1,...,m

i=1 (eC; ’

= k-means-type algorithm: Determining the 'class prototypes’ z; by:

Q(C;, z) = d(¢,z) — min
el

Kaufman/Rousseeuw (1987): medoid of C}, partitioning around medoids
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e Diday (1971,...), Bock (1968,...), Govaert (1974), Charles (1977),...:

qg(C, 2) = ZZ d(k,z;) — min

: C.z2
1=1 keC;

7 7 7

— Kernel clustering: prototype z; = a subset of C; with |z;| = 4, say

~ Determinantal criterion: d(xy, 2;) = || — 2|5 with det(Q) = 1

~ Adaptive distance clustering: d(xy, 2;) = || — 2|5, with det(Q;) = 1

— Principal component clustering: Prototypes z; are class-specific hyperplanes
— Regression clustering: Prototypes z; are class-specific regression hyperplanes

— Projection pursuit clustering: Prototypes z1, ..., z; on the same low-dim. hyperplane

15



OPTIMISATION
EN .

CLASSIFICATION
AUTOMATIQUE
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e Diday & Schroeder (1974 ff.), Sclove (1977):

Classification maximum likelihood, fixed-partition model,
model-based clustering:

Model: X, ..., X, independent random vectors, density family f(e; 2)
Exists a k-partition C = (C1,...,C}) of O ={1,...,n}
Exist £ class-specific parameter vectors z1, ..., 2
such that

Xy ~ f(e:z) for all ¢ € C;

Maximum likelihood estimation of C and Z = (z1, ..., 2;):

— = ZZ —log f(xg; )] — Ignzn

1=1 LeC}

A two-parameter clustering criterion !

—> A generalized k-means algorithm alternating
— class-specific m.l. estimation of parameters z;

— minimum-distance (maximum likelihood) assignment of all data points
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5. Les temps modernes:
Convexity-based criteria and k-tangent algorithm

k n k
9(C) =)y M=l = Y Ml =D |G| [[7c|* — min
=1 (el (=1 J=1 _,
Equivalent, with the convex function ¢(z) := ||z||*:
Gn(C) = EZ Cil - HECZHQ - Z nZ ¢<EC’Z> — mCaX
i=1 i=1
Continuous analogue for random vector X ~ P in IR":
k
G(B) == Y P(X€B) ¢(E[X|X€B]) — max
i=1

— Is this a relevant problem for practice?
— Is there an analogue to the k-means algorithm for SSQ7?

— How to find an equivalent two-parameter criterion?
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Reminder:

For each 'support point’ z € RP, the convex function ¢(x)

has a support (tangent) hyperplane

t(x;2) = ¢(2) + a"(x — 2)
with a slope vector a = </,¢(x),—, € IR’ and

o(xr) > t(x;2) for all x € IR?
o(z) = t(z;2) forx =z

19
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Original clustering problem:

k

G(B) = ZP(X € B) - ¢(E[X]X € Bj) — max

Equivalent dual two-parameter problem:
Looking for k support points 21, ..., z,, € IR?

and corresponding tangents (hyperplanes)
tx; z) = P(2;) + i (x — )
such that

G(B, 2) Z/ ) = tla; 2))dP(z) — wip

”Minimum volume problem”
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Original clustering problem:

k

G(B) = ZP(X € B) - ¢(E[X]X € Bj) — max

Equivalent dual two-parameter problem:
Looking for k support points 21, ..., z,, € IR?

and corresponding tangents (hyperplanes)
tx; z) = P(2;) + i (x — )
such that

G(B, 2) Z/ ) = tla; 2))dP(z) — wip

”Minimum volume problem”
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Alternating minimization: k-tangent clustering algorithm

(I) Partial minimization w.r.to the support point system Z = (z1, ..., z,):

~ ~

ming G(B, Z) = G(B, Z¥)
yields the system Z* = (27, ..., 2" ) of class centroids z .= F[X|X € Bj].
(IT) Partial minimization w.r.t. the partition B = (B4, ..., B,,) of IR’:
ming G(B, Z) = G(B*, 2Z)

yields the maximum-support-plane partition B* = (B, ..., B ) with classes

B ={xe R|txz) = maxj_1._ mt(z;2;) } i=1,....,m

.....

comprizing all = € IR? where the i-th tangent hyperplane ¢(x; 2;) is maximum.
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An application:
Py, P; two probability distributions for X € IR? with densities fi(z), fo(x),
likelihood ratio A(z) := fo(x)/ f1(x)

Discretization of X:
Look for a partition B = (Bjy, ..., Bi) of IR” such that the discrete distributions

P1<X c Bl>,...,P1(X S Bk> and P2<X c Bl>,...,P2(X S Bk>
are as different as possible in the sense:

> non-centrality parameter criterion:
(P,(B Py(B)\"
P (B
-3 -3 nw) (1- 355)

— EINX)|X € B])?* — max

Il
~.
I M >~ ||
—_

Csziszar’s divergence criterion with a convex ¢:

ZPl EINX)|X € B)]) — max
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6. L’avenir

Congratulations to Edwin !
Best wishes for your future work!
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